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Abstract. Formal behavioral specifications written early in the systesign
process and communicated across all design phases havsHzwemto increase
the dficiency, consistency, and quality of the system under dewedémt. To pre-
vent introducing design or verification errors, it is crudia test specifications
for satisfiability Our focus here is on specifications expressed in linear eeahp
logic (LTL).

We introduce a novel encoding of symbolic transition-baB&dhi automata and
a novel, “sloppy,” transition encoding, both of which rdsnlimproved scalabil-
ity. We also define novel BDD variable orders based on tre@meosition of
formula parse trees. We describe and extensively test a ndtiremcoding ap-
proach utilizing these novel encoding techniques to crg@encoding variations.
We show that our novel encodings translate to significambetones exponential,
improvement over the current standard encoding for syrolddil satisfiability
checking.

1 Introduction

In property-based desigiormal properties, written in temporal logics such as LTB[3
are written early in the system-design process and comratedcacross all design
phases to increase théieiency, consistency, and quality of the system under develo
ment [39, 41]. Property-based design and other designddfication techniques cap-
ture design intent precisely, and use formal logic properboth to guide the design
process and to integrate verification into the design p[@8. The shift to specifying
desired system behavior in terms of formal logic propertisks introducing specifi-
cation errors in this very initial phase of system desigising the need foproperty
assurancg34, 39].

The need for checking for errors in formal LTL properties egsing desired sys-
tem behavior first arose in the context of model checking,reiacuity checkingims
at reducing the likelihood that a property that is satisfigcthe model under verifi-
cation is an erroneous property [3, 31]. Property assur@ogore challenging at the
initial phases of property-based design, before a moddieirhplementation has been
specified.Inherent vacuity checking a set of sanity checks that can be applied to a
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set of temporal properties, even before a model of the syh#sybeen developed, but
many possible errors cannot be detected by inherent vachiégking [22].

A stronger sanity check for a set of temporal properties ik t&alizability check-
ing, in which we test whether there is an open system thaifietiall the properties
in the set [36], but such a test is very expensive computaliyprin LTL satisfiability
checking, we test whether there is a closed system thafisatal the properties in
the set. The satisfiability test is weaker than the realligltest, but its complexity is
lower; it has the same complexity as LTL model checking [##fact, LTL satisfiability
checking can be implemented via LTL model checking; seevbelo

Indeed, the need for LTL satisfiability checking is widelgognized [16, 27, 29,
32, 40]. Foremost, it serves to ensure that the behaviosarifgion of a system is in-
ternally consistent and neither over- or under-constiiffean LTL property is either
valid, or unsatisfiablethis must be due to an error. Consider, for example, the speci
fication alwaygb; — eventually b), whereb; andb, are propositional formulas. If
b, is a tautology, then this property is valid. b is a contradiction, then this prop-
erty is unsatisfiable. Furthermore, the collective set @fperties describing a system
must be satisfiable, to avoid contradictions betwedieint requirements. Satisfiabil-
ity checking is particularly important when the set of pradjes describing the design
intent continues to evolve, as properties are added anccefand have to be checked
repeatedly. Because of the need to consider large sets péiies, it is critical that the
satisfiability test bescalable and able to handle complex temporal properties. This is
challenging, as LTL satisfiability is known to be PSPACE-qbate [44].

As pointed out in [40], satisfiability checking can be penfied via model check-
ing: auniversal mode(that is, a model that allows all possible traces) does rttfga
a linear temporal property:f precisely whenf is satisfiable. In [40] we explored the
effectiveness of model checkers as LTL satisfiability check&tescompared there the
performance of explicit-state and symbolic model checkBrth use the automata-
theoretic approach [48] but in afterent way. Explicit-state model checkers translate
LTL formulas to Buchi automata explicitly and then use apl&it graph-search algo-
rithm [13]. For satisfiability checking, the constructiohthe automaton is the more
demanding task. Symbolic model checkers construct symleoicodings of automata
and then use a symbolic nonemptiness test. The symbolitractisn of the automaton
is easy, but the nonemptiness test is computationally ddmgnThe extensive set of
experiments described in [40] showed that the symbolic @gogr to LTL satisfiability
is significantly superior to the explicit-state approactamms of scalability.

In the context of explicit-state model checking, there heerbextensive research on
optimized construction of automata from LTL formulas [18, 23, 25, 26, 43, 45, 46],
where a typical goal is to minimize the size of constructetaata [47]. Optimizing
the construction of symbolic automata is morgidult, as the size of the symbolic rep-
resentation does not correspond directly to its optimadityinitial symbolic encoding
of automata was proposed in [8], but the optimized encodiagall CGH, proposed
by Clarke, Grumberg, and Hamaguchi [12], has become thede f&andard encod-
ing. CGH encoding is used by model checkers such as CadenteS8¥NuSMV, and
has been extended to symbolic encodings of industrial 8patidbn languages [11].
Surprisingly, there has been little follow-up research e topic.
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In this paper, we propose novel symbolic LTL-to-automad@astations and utilize
them in a new multi-encoding approach to achieve significsorhetimes exponential,
improvement over the current standard encoding for LTLs$atbility checking. First
we introduce and prove the correctness of a novel encodisgrabolic automata in-
spired by optimized constructions of explicit automata, P&]. While the CGH encod-
ing usesGeneralized Biichi Automa{&BA), our new encoding is based dransition-
Based Biichi Automat@fGBA). Second, inspired by work on symbolic satisfiability
checking for modal logic [33], we introduce here a nostelppyencoding of symbolic
automata, as opposed to thissyencoding used in CGH. Sloppy encoding uses looser
constraints, which sometimes results in smaller BDDs. Tdyepy approach can be ap-
plied both to GBA-based and TGBA-based encodings, prouidaibne uses negation-
normal form (NNF), [45], rather than the Boolean normal fofNF) used in CGH.
Finally, we introduce several new variable-ordering scegnbased on tree decompo-
sition of the LTL parse tree, inspired by observations tletdte tree decompositions to
BDD variable ordering [19]. The combination of GBRGBA, fussysloppy, BNENNF,
and diferent variable orders yields a space of 30 possible configasaof symbolic
automata encodings. (Not all combinations yield viableficumations.)

Since the value of novel encoding techniques lies in ine@ssalability, we evalu-
ate our novel encodings in the context of LTL satisfiabilitygecking, utilizing a compre-
hensive and challenging collection of widely-used benarf@amulas [9, 16, 27, 40].
For each formula, we perform satisfiability checking usitig3@ encodings. (We use
CadenceSMYV as our experimental platform.) Our results destnate conclusively that
no encoding performs best across our large benchmark suitthermore, no single
approach—GBA vs. TGBA, fussy vs. sloppy, BNF vs. NNF, or ang wariable order,
is dominant. This is consistent with the observation madethgrs [1, 47], that in the
context of symbolic techniques one typically does not find/enhing” algorithmic con-
figuration. In response, we developed a multi-encoding ®&NDA, which runs sev-
eral encodings in parallel, terminating when the first pesceeturns. Our experiments
demonstrate conclusively that the multi-encoding apgnasging the novel encodings
invented in this paper achieves substantial improvemest©&H, the current standard
encoding; in fact PANDA significantly bested the native LTlodel checker built into
CadenceSMV.

The structure of this paper is as follows. We review the CGldoeling [12] in
Section 2. Next, in Section 3, we describe our novel symbbEBA encoding. We
introduce our novel sloppy encoding and our new methodstoosing BDD variable
orderings and discuss our space of symbolic encoding tquaksiin Section 4. After
setting up our scalability experiment in Section 5, we pnéseir test results in Section
6, followed by a discussion in Section 7. Though our consimaccan be used with
different symbolic model checking tools, in this paper, we folibe convention of [12]
and give examples of all constructions using the SMV syntax.

2 Preliminaries

We assume familiarity with LTL [18]; For convenience, AppinA defines LTL se-
mantics. We use two normal forms:
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Definition 1 Boolean Normal Form (BNF) rewrites the input formula to use onty,
vV, X, U, and¥ . In other words, we replace, —, R, andG with their equivalents:
1A = —(=01V ~0) 1 R = —(=01 U —02)
01— 02= 01 \Y4 g ggl = _'?L-—'gl

Definition 2 Negation Normal Form (NNF) pushes negation inwards until only atomic
propositions are negated, using the following rules: ~(Xg) = X(~g)

-—g=g —(01UY) = (-91R~92)
—(91 A 92) = (=01) V (=02) —(91R92) = (91 U~02)
—(01V G2) = (—01) A (—02) -(G9) = 7 (-0)
(91— G2) = (=01) V Q2 -(79) = G(-9)

In automata-theoretic model checking, we represent LTinfdas with Biichi automata.

Definition 3 A Generalized Bichi Automaton (GBA) is a quintupl€Q, %, 6, Qo, F),

where: ¢ 5 C Qx 2 x Qis atransition relation.
¢ Q is afinite set of states. e Qo C Qs a set of initial states.
¢ X' is a finite alphabet. e F C 29 s a set of accepting state sets.

A run of a Buchi automaton A over an infinite trace- o, 71, 12, ... € X' IS a sequence
o, 01, U2, - . . Of states such thatoge Qp, and(qi, ri, gi+1) € 6 for alli > 0. A accepts
n if the run overr visits states in every set in F infinitely often. We denotestteof

infinite traces accepted by A Ify,(A).

A trace satisfying LTL formulaf is an infinite run over the alphab&t= 2P™P, where
Propis the underlying set of atomic propositions. We denoterimdel$f) the set of
traces satisfying. The next theorem relates the expressive power of LTL to dfiat
Buchi automata.

Theorem 1 [49] Given an LTL formula f, we can construct a generalized Biachi
tomaton A = (Q,~, 6, Qo, F) such thatQ| is in 2°0T), > = 2P™P and_£,(A) is exactly
modelgf).

This theorem reduces LTL satisfiability checking to autaarifieoretic nonemptiness
checking, ad is satisfiablefi model¢f) # 0 iff £,(A¢) £ 0.

LTL satisfiability checking relates to LTL model checking fadlows. We use a
universal model Mhat generates all traces overop such that£,(M) = (2°P)«.
The code for this model appears in [40] and Appendix B. We navehthatM doesnot
satisfy—f iff f is satisfiable. We use a symbolic model checker to check tineufia— f
againstM; f is satisfiable precisely when the model checker finds a coexdaenple.

CGH encodingln this paper we focus on LTL to symbolic Blichi automata coation.
We recap the CGH encoding [12], which assumes that the farifniglin BNF, and then
forms a symbolic GBA. We first define tli&GH-closureof an LTL formulaf as the set
of all subformulas off (including f itself), where we also add the formud(g U h)
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for each subformula of the form U h. The X-formulas in the CGH-closure dof are
calledelementaryformulas.

We declare a Boolean SMV variabtel x4 for each elementary formul¥g in the
CGHe-closure off. Also, each atomic proposition ifiis declared as a Boolean SMV
variable. We define an auxiliary variab®, for every formulah in the CGH-closure
of f. (Auxiliary variables are substituted away by SMV and do meajfuired allocated
BDD variables.) The characteristic function for an auxili@ariableS;, is defined as
follows:

Sh=pif pe AP S =ISgifh=-g  Sh=SulSye ifh=g1VvQ
Sh=EL, if hisaformulaXg Sh = Sel(Sq1& Sk 4 ) if h =01 U G2
We now generate the SMV modil;:

MODULE main
VAR
a: boolean; /*declare a Boolean var for each atomic prop in f */
EL_Xg: boolean; /*declare a Boolean var for every formula Xg in the CGH-closure*/
DEFINE /*auxiliary vars according to characteristic function */
S_h = ...
TRANS /*for every formula Xg in the CGH-closure, add a transition constraint*/
(S_Xg = next(S_g))
FAIRNESS !S_gUh | S_h /*for each subformula gUh */
FAIRNESS TRUE /*or a generic fairness condition otherwise*/
SPEC 1(S_f & EG true) /*end with a SPEC statement*/

The traces oM; correspond to the accepting runsAf, starting from arbitrary states.
Thus, satisfiability off corresponds to nonemptiness Mf;, starting from an initial
state. We can model check such nonemptinessSPER ! (S_f & EG true).Acoun-
terexample is an infinite trace starting at a state wBgneolds. Thus, the model checker
returns a counterexample that is a trace satisfyfing

Remark 1 While the syntax we use is shared by CadenceSMV and NuSMvethee
semantics of CTL model checking in these model checkers fallyodocumented and
there are some subtle but significanffdiences between the two tools. Therefore, we
use CadenceSMV semantics here and describe these sshitiedippendix C.

3 A Symbolic Transition-Based Generalized Bchi Automata
(TGBA) Encoding

We now introduce a novel symbolic encoding, referred to aBAGnspired by the
explicit-state transition-based Generalized Bichi eatta of [26]. Such automata are
used by SPOT [17], which was shown experimentally [40] toHselest explicit LTL
translator for satisfiability checking.

Definition 4 A Transition-Based Generalized Richi Automaton (TGBA) is a quin-
tuple(Q, 2’6, Qo, F), where: e 5 C Qx X x Qis atransition relation.

¢ Q is afinite set of states. e Qp C Qs a set of initial states.

e X' is a finite alphabet. e F C 2 is a set of accepting transitions.



6 Kristin Y. Rozier and Moshe Y. Vardi

A run of a TGBA over an infinite trace= ng, 71, 72, ... € X' is a sequencéo, 7o, q1),
(Q1, 71, Q2), {O2, 12, O3), . . . Of transitions ind such that g € Qq. The automaton accepts
nif it has a run overr that traverses some transition from each set in F infinitélgro

The next theorem relates the expressive power of LTL to thaGBAs.

Theorem 2 [14,26]Given an LTL formula f, we can construct a TGBAA(Q, 2, 6,
Qo, F) such thaiQ] is in 2201 5 = 2P and £,,(A¢) is exactly modeld).

Expressing acceptance conditions in terms of transitiatiser than states enables a
significant reduction in the size of the automata correspai LTL formulas [14,26].

Our new encoding of symbolic automata, based on TGBAs, asstinat the input
formula f is in NNF. (This is due to the way that the satisfactionZéfformulas is
handled by means of promise variables; see below.) As in G@Hfirst define the
closureof an LTL formula f. In the case of TGBAs, however, we simply define the
closure to be the set of all subformulasfofincluding f itself). Note that, unlike in the
CGH encodingl{- and¥ - formulas do not require the introduction of néaformulas.

The set of elementary formulas now contairis:all U-, R-, ¥-, G-, and GF -
subformulas in the closure df as well as all subformulagwhereXg is in the closure
of f. Note that we treat the comm@j¥ combination as a single operator.

Again, we declare a Boolean SMV varialie 4 for every elementary formulg
as well as Boolean variables for each atomic propositiofi im addition, we declare
a Boolean SMVpromise variable g for every U-, -, and g7 -subformula in the
closure. These formulas are used to define fairness conditiotuitively, Py holds
wheng is a promise for the future that is not yet fulfilled.Pf does not hold, then the
promise must be fulfilled immediately. To ensure satistattf eventualities we require
that each promise variabl is false infinitely often. The TGBA encoding creates fewer
EL variables than the CGH encoding, but it does add promiselizs.

Again, we define an auxiliary variab$, for every formulahin the closure off . The
characteristic function fo8y, is defined as in the CGH encoding, with the following

changes: Sh=Su&Sgifh=g AQ,
Sh =nex(ELg) if h=Xg
Sh = Sg2l(Sq1& Pg1 w ge&(nex{Elgr 4/ g2))) if h=01 U @2
Sh = Sg2&(Sg1l(nex(ELgi = ¢2))) if h=01 R g2
Sh = Sg&(nex(Elgg))ifh=6Gg
Sh = S4l(Ps g&nex(ELy o)) if h=F g
Sh = (nex(ELgr g))&(sg|Pg7—‘ g) ifh=G¥g

Since we reason directly over the temporal subformulas (@nd not overXg for
temporal subformulg as in CGH), the transition relation associates elementawry f
mulas with matching elements of our characteristic functiéinally, we generate our
symbolic TGBA,; here is our SMV modé:

MODULE main
VAR /*declare a boolean variable for each atomic proposition in f*/
a : boolean;

VAR /*declare a new variable for each elementary formula*/
EL_f : boolean; /*f is the input LTL formula*/
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EL_gl : boolean; /*g is an X-, F-, U-, or GF-formula*/

DEFINE /*characteristic function definition*/
Sg=...

TRANS /*for each EL-var, generate a line here*/
( EL_gl = S_g1) & /*a line for every EL variable*/

FAIRNESS (!P_gl) /*fairness constraint for each promise variable*/

FAIRNESS TRUE /*only needed if there are no promise variables*/
SPEC ! (EL_f & EG TRUE)

Symbolic TGBAs can only be created for NNF formulas becatsemiodel checker
tries to guess a sequence of values for each of the promiisdies to satisfy the subfor-
mulas, which does not work for negati¢é-formulas. (This is also the case for explicit
state model checking; SPOT also requires NNF for TGBA enupfli4].) Consider the
formulaf = —=(aU b) and the tracea=1,b=0, a=1,b=1, ... Clearly, @U b) holds

in the trace, sd fails in the trace. If, however, we cho8eaUb to be false at time 0,
thenEL_aUb is false at time 0, which means thfholds at time 0. The correctness of
our construction is summarized by the following theorem.

Theorem 3 Let M; be the SMV program made by the TGBA encoding for LTL formula
f. Then M does not satisfy the specificatioteL_f & EG true) iff f is satisfiable.

The proof of this theorem appears in Appendix D.

4 A Set of 30 Symbolic Automata Encodings

Our novel encodings are combinations of four componenjdNtmal Form: BNF or
NNF, described above, (2) Automaton Form: GBA or TGBA, disat above, (3) Tran-
sition Form: fussy or sloppy, described below, and (4) agaOrder: default, naive,
LEXP, LEXM, MCS-MIN, MCS-MAX, described below. In total, we have 30 novel encodings,
since BNF can only be used with fussy-encoded GBAs, as exqudielow. CGH cor-
responds to BNFussyGBA; we encode this combination with all six variable orders

Automaton FormAs discussed earlier, CGH is based on GBA, in combinatioh wit
BNF. We can combine, however, GBA also with NNF. For this, wedto expand the
characteristic function for symbolic GBAs in order to forhretn from NNF formulas:
Sy = Sgl& ng if h= 01 AQ2 Sh = Sg& Sx(gg) if h= gg
Sh = 892&(891|S/\’(91R g2)) if h= 01 R 02 Sh= SQ|SX(¢g) if h= (f-g
Since our focus here is on symbolic encoding, PANDA, unlikeléceSMV, does
not apply formula rewriting and related optimizations;het, PANDA's symbolic au-
tomata are created directly from the given normal form offtvenula. Formula rewrit-
ing may lead to further improvement in PANDA's performance.

Sloppy Encoding: A Novel Transition For@GH employs fi-transitions, of the form
TRANS (EL_g=(S_g)).We refer to this afussyencoding. For formulas in NNF, we can
use only-if transitions of the formRANS (EL_g->(S-g)), which we refer to asloppy
encoding. A similar idea was shown to be useful in the coméxnodal satisfiability
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solving [33]. Sloppy encoding increases the level of notedrinism, yielding a looser,
less constrained encoding of symbolic automata, which inyncases results in smaller
BDDs. A side-by-side example of thefiirences between GBA and TGBA encodings
(demonstrating the sloppy transition form) for formula: ((Xa)&(b U (1a))) is given

in Figures 1-2.

MODULE main
/*formula: ((X (a)) & ((bOU (!(a ))*/
VAR /*a Boolean var for each prop in f*/
a : boolean;
b : boolean;
VAR /*a var EL_X_g for each formula (X g) in
el_list w/primary op X, U, R, G, or F¥*/

EL_X_a : boolean;
EL_X__b_U_NOT_a : boolean;
DEFINE

/*each S_h in the characteristic function*/
S__X_a__AND__b_U_NOT_a :=
(EL_X_a) & (S__b_U_NOT_a);
S__b_U_NOT_a :=
('@a)d)) | (b & EL_X__b_U_NOT_a);

TRANS /*a line for each (X g) in el_list*/
( EL_X_a -> (next(a) ) ) &
( EL_X__b_U_NOT_a -> (next(S__b_U_NOT_a) ))

FAIRNESS
SPEC

(!S__b_U_NOT_a | (!(a )))
'(S__X_a__AND__b_U_NOT_a & EG TRUE)

Fig. 1. NNF/sloppyGBA encoding for CadenceSMV

MODULE main

/*formula: ((X (a ))& ((bHU ((a NN*/

VAR /*a Boolean var for each prop in f*/

a : boolean;
b : boolean;

VAR /*a var for each EL_var in el_list*/
EL__X_a__AND__b_U_NOT_a : boolean;
P__b_U_NOT_a: boolean;

EL__b_U_NOT_a : boolean;

DEFINE

/*each S_h in the characteristic function*/
S__X_a__AND__b_U_NOT_a :=

(S_X_a) & (EL__b_U_NOT_a);
S_X_a := (next(a));
S__b_U_NOT_a := ( ((!(a)))
| (b& P__b_U_NOT_a & (next(EL__b_U_NOT_a))));

TRANS /*a line for each EL_var in el_list*/

( EL__X_a__AND__b_U_NOT_a —>
(S__X_a__AND__b_U_NOT_a) ) &
( EL__b_U_NOT_a -> (S__b_U_NOT_a) )

FAIRNESS  (!P__b_U_NOT_a)

SPEC ' (EL__X_a__AND__b_U_NOT_a & EG TRUE)

Fig. 2. NNF/sloppyTGBA encoding for CadenceSMV

A New Way of Choosing BDD Variable Orde&ymbolic model checkers search for
a fair trace in the model-automaton product using a BDD-thdispoint algorithm, a
process whoseficacy is highly sensitive to variable order [7]. Finding anio@l BDD
variable order is NP-hard, and good heuristics for variatiering are crucial.

\a
(a) GBA variable graph

EL(xa)r® u —a)) —
S ‘ ( N o \

ELw vy -a) =— P u -a

X ()

/ \\\a
(b) TGBA variable graph

Fig. 3. Graphs in (a) and (b) were both formed from the parse tred ter((Xa) A (b U —a)).

Recall that we define state variables in the symbolic modebfity certain subfor-
mulas:p € AP, EL_g, andP_g for some subformulag. We form the variable graph by

identifying nodes in the input-formula parse tree that espond to the primary opera-
tors of those subformulas. Since we declaféadent variables for the GBA and TGBA
encodings, the variable graph for a formdlanay vary depending on the automaton
form we choose. Figure 3 displays the GBA and TGBA variabégpys for an example
formula, overlaid on the parse tree for this formula. We cextreach variable-labeled
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vertex to its closest variable-labeled vertex descendgrekipping over vertices in the
parse tree that do not correspond to state variables in daneion construction. We
create one node per subformula variable, irrespectiveehtimber of occurrences of
the subformula; for example, we create only one node for tbpgsitiona in Figure 3.

We implement five variable ordering schemes, all of whiclettie variable graph
as input. We compare these to thefaultheuristic of CadenceSMV. Theivevariable
order is formed directly from a pre-order, depth-first tresze of the variable graph. We
derive four additional variable-ordering heuristics bypueposing node-ordering algo-
rithms designed for graph triangulation [3DWe use two variants of a lexicographic
breadth-first search algorithm: variamsrfect(LEXP) andminimal (LEXM). LEXP labels
each vertex in the variable graph with its already-orderemjmbors; the unordered
vertex with the lexicographic largest label is selectedtriexhe variable ordemLExm
operates similarly, but labels unordered vertices witthlibeir neighbors and also all
vertices that can be reached by a path of unordered vertithssmaller labels. The
maximume-cardinality searchI(S) variable ordering schemeftirs in the vertex selec-
tion criterion, selecting the vertex in the variable graplaaent to the highest number
of already ordered vertices next. We seed MCS with an inigatex, chosen either to
have themaximumMcs-MAX) or minimum(MCS-MIN) degree.

5 Experimental Methodology

Test MethodsEach test was performed in two steps. First, we applied oonbsyic
encodings to the input formula. Second, each symbolic aatomand variable order
file pair was checked by CadenceSMV. Since encoding time fsnmal and heavily
dominated by model-analysis time (the time to check the rfmenonemptiness to
determine LTL satisfiability) we focus exclusively on thé&téa here.

Platform We ran all tests on Shared University Grid at Rice (SUG@R)nél Xeon
compute clustet. SUG@R is comprised of 134 SunFire x4150 nodes, each with two
quad-core Intel Xeon processors running at 2.83GHz and 1&GR\M per processor.
The OS is Red Hat Enterprise 5 Linux, 2.6.18 kernel. Eachwtastrun with exclusive
access to one node. Times were measured using theddmixcommand.

Input Formulas We employed a widely-used [9, 16, 27, 40] collection of benatk
formulas, established by [40]. All encodings were testadgithree types of scalable
formulas: random, counter, and pattern. Definitions of ¢hflesmulas are repeated for
convenience in Appendix B. Our test set includes 4 countgBgmattern formula varia-
tions, each of which scales to a large number of variables68r000 random formulas.

Correctnessin addition to proving the correctness of our algorithm, teerectness
of our implementation was established by comparing for y¥ermula in our large
benchmark suite, the results (either SAT or UNSAT) returbgall encodings studied
here, as well as the results returned by CadenceSMYV for g the same formula as
an LTL specification for the universal model. We never entered an inconsistency.

3 Graph triangulation implementation coded by the Kavrak BaRice University.
4http://rcsg.rice.edu/sugar/
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6 Experimental Results

Our experiments demonstrate that the novel encoding metivedave introduced sig-
nificantly improve the translation of LTL formulas to symmoautomata, as measured
in time to check the resulting automata for nonemptinesdlamgdize of the state space
we can check. No single encoding, however, consistentlyiat@s for all types of for-
mulas. Instead, we find thatftBrent encodings are better suited tfelient formulas.
Therefore, we recommend using a multi-encoding approackariant of the multi-
engine approach [37], of running all encodings in paralted &erminating when the
first job completes. We call our tool PANDA for “Portfolio Appach to Navigate the
Design of Automata.”

Seven configurations are not competitiwhile we can not predict the best encodings,
we can reliably predict the worst. The following encodingsrg/never optimal for any
formulas in our test set. Thus, out of our 30 possible enaxgjiwe rule out these seven:

— BNF/fussyGBA/LEXM (essentially CGH with.EXM)

— NNF/fussyGBA/LEXM — NNF/fussyTGBA/MCS-MAX
— NNF/fussyTGBA/LEXM — NNF/sloppy TGBA/MCS-MAX
— NNF/sloppyGBA/LEXM — NNF/sloppy TGBA/MCS-MIN

NNF is the best normal form, most (but not all) of the tinfdNF encodings were
always better for all counter and pattern formulas; seeefample, Figure 4. Figure 5
demonstrates the use of both normal forms in the optimaldings chosen by PANDA
for random formulas. BNF encodings were occasionally $icgmtly better than NNF;

the solid point in Figure 5 corresponds to a formula for which best BNF encoding
was more than four times faster than the best NNF encodingr. Wak best much more
often than BNF, likely because using NNF has the added behafitit allows us to

employ our sloppy encoding and TGBAs, which often carry ttosvn performance

advantages.

Best BNF encoding vs best NNF encoding:

R Pattern Formulas 3-variable, 160 length random formulas
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Fig.4. Median model analysis time fdéfig.5. Best encodings of 500 3-variable, 160
R(n) = AL (GF pi vV FGpi1) for PANDA length random formulas. Points fall below the
NNF/sloppyGBA/naive, CadenceSMV, andiagonal when NNF is better.

the best BNF encoding.
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No automaton form is besOur TGBA encodings dominated f&%, S, andU pattern
formulas and both types of 3-variable counter formulas.ikstance, the log-scale plot
in Figure 6 shows that PANDA's median model analysis timeRgpattern formulas
grows subexponentially as a function of the number of vdemlwhile CadenceSMV’s
median model analysis time for the same formulas grows expitedly. (The best of
PANDA's GBA encodings is also graphed for comparison.) GB&alings are better
for other pattern formulas, both types of 2-variable coufdemulas, and the majority
of random formulas; Figure 7 demonstrates this trend forl@8@th random formulas.

Best TGBA encoding vs best GBA encoding:
R2 Pattern Formulas 3-variable, 180 length random formulas

P o

=
3
1

10° CadenceSMV

DE

PANDA-gba

H
2/

T

O
U
=

,_
U

PANDA-tgba

5
@D
g

oy
1S}

PANDA-tgba
PANDA-gba
CadenceSMV

Median Model Analysis Time (seconds)
et
5

,_.
5]

TGBA Encodings Model Analysis Times (sec)
=y
%
0
|
m]
ul

=
)
=2

Lo b b b b b b by by bl
0 100 200 300 400 500 600 700 800 900 1000 0 10" 10
Number of Variables GBA Encodings Model Analysis Times (sec)

Fig.6. Ry(n) = (..(pr R p2) R ...) R pn. Fig. 7. Best encodings of 500 3-variable, 180
PANDA's NNF/sloppyTGBA/LEXP encodinglength random formulas.

scales better than the best GBA encod-

ing, NNFsloppyGBA/naive, and exponen-

tially better than CadenceSMV.

No transition form is besSloppy is the best transition form for all pattern formulasr
instance, the log-scale plot of Figure 8 illustrates thallPA's median model analysis
time forU pattern formulas grows subexponentially as a function efthmber of vari-
ables, while CadenceSMV’s median model analysis time ferstime formulas grows
exponentially. Fussy encoding is better for all countenfolas. The best encodings of
random formulas were split between fussy and sloppy. Fi@ulemonstrates this trend
for 140 length random formulas.

No variable order is best, butexy is worst. The best encodings for our benchmark
formula set were split between five variable orders. Theaand default orders proved
optimal for more random formulas than the other orders. FEdl0 demonstrates that
neither the naive order nor the default order is better thamther for random formulas.
The naive order was optimal f@, Q, R, U,, andS patternsMcs-MAX is optimal for 2-
and 3-variable linear counters. Thexp variable order dominated faz,, C,, U, and
R, pattern formulas, as well as for 2- and 3-variable countanfdas, yet it was rarely
best for random formulas. Figure 11 demonstrates the matitéstence in scalability
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Best fussy encoding vs best sloppy encoding:
U Pattern Formulas 3-variable, 140 length random formulas
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Fig.8.U(n) = (..(p1 U p2) U ...) U pn. Fig. 9. Best encodings of 500 3-variable, 140
PANDA's NNF/sloppyTGBA/LEXP scalabledength random formulas. Points fall below the
exponentially better than CadenceSMV. diagonal when sloppy encoding is best.

provided by using the.Exp order over running CadenceSMV on 3-variable counter
formulas. We can analyze much larger models with PANDA usitxp than with the
native CadenceSMV encoding before memory-out. We neverddlieLEXM order to

be the single best encoding for any formula.

Best encodings with naive vs default variable orders .
3-variable, 195 length random formulas 3-variable Counter Formulas
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Fig. 10. Best encodings of 500 3-variable, 1Bk.11. Maximum states analyzed before

length random formulas. Points fall above #pace-out. CadenceSMV quits at 10240 states.

diagonal when naive variable order is best. PANDA's NNF/fussyTGBA/LEXP scales to
491520 states.

A formula class typically has a best encoding, but preditiare djficult While each
of our pattern and counter formulas had a best (or a pair df) lerodings, which
remained consistent as we scaled the formulas, we foundaatould not reliably
predict the best encoding using any statistics gathered frarsing, such as operator
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counts or ratios. For example, we found that the best engddina pattern formula
was not necessarily the best for a randomly-generated flaroamprised of the same
temporal operators. We surmise that the best encodingdstdiehe structure of the
formula on a deeper level; developing an accurate heuisstaft to future work.

There is no single best encoding; a multi-encoding apprdadiearly superior We
implement a novel multi-encoding approach: our new PAND@ toeates several en-
codings of a formula and uses a symbolic model checker takdheen for satisfiability
in parallel, terminating when the first check completes. @yrerimental data supports
this multi-encoding approach. Figures 4, 6, and 8 highltgbktsignificant decrease in
CadenceSMV model analysis time fler R, andU pattern formulas, while Figure 11
demonstrates increased scalability in terms of state spsiog counter formulas. Al-
together, we demonstrate that a multi-encoding approadfaisatically more scalable
than the current state-of-the-art. The increase in sdélais dependant on the spe-
cific formula, though for some formulas PANDA's model anddytime is exponentially
better than CadenceSMV'’s model analysis time for the saassaf formulas.

7 Discussion

This paper brought attention to the issue of scalable coctsbn of symbolic automata
for LTL formulas in the context of LTL satisfiability checlgn We defined novel en-

codings and novel BDD variable orders for accomplishing task. We explored the
impact of these encodings, comprised of combinations ofmabrforms, automaton

forms, transition forms, and combined with variable ord&¥e showed that each can
have a significant impact on performance. At the same timeshweved that no single

encoding outperforms all others and showed that a multeedimg approach yields the
best result, consistently outperforming the native tratish of CadenceSMV.

We do not claim to have exhaustively covered the space ofildesencodings
of symbolic automata. Several papers on the automatadtieapproach to LTL de-
scribe approaches that could be turned into alternativedings of symbolic automata,
cf. [5, 21,23, 42]. The advantage of the multi-encoding apph we introduced here is
its extensibility adding additional encodings is straightforward. The iretcoding
approach can also be combined witltfglient back ends. In this paper we used Ca-
denceSMV as a BDD-based back end; using another symbolicéyat (cf. [16]) or
a SAT-based back end (cf. [4]) would be an alternative apgrpas both BDD-based
and SAT-based back ends require symbolic automata. Sinceséives as the basis for
industrial languages such as PSL and SVA, the encoding itpods studied here may
also serve as the basis for novel encodings of such languefgf, 11].

In this paper we examined our novel symbolic encodings of iiflthe context
of satisfiability checking. An important flerence between satisfiability checking and
model checking is that in the former we expect to have to reamlich larger formulas,
since we need to consider the conjunction of propertieso, Ats model checking the
size of the symbolic automata can be dwarfed by the size ofibwel under verifica-
tion. Thus, the issue of symbolic encoding of automata irctireext of model checking
deserves a separate investigation.
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Appendix A: LTL Semantics

Linear Temporal Logic (LTL) formulas are composed of a finite detop of atomic
propositions, the Boolean connectives\, v, and—, and the temporal connectivés
(until), R (release)X (next time),G (globally), and# (in the future). We define LTL
formulas inductively:

Definition 5 For every pe Prop, p is a formula. If g, g and g are formulas, then so
are:

-0 A OiVe 0—0 Xg oaU nRP G99 F9

LTL formulas describe the behavior of the variablesFrop over a linear series of
time steps starting at the present time (time step zero) sigth@ing infinitely into the
future. We satisfy such formulas oveomputationswhich are functions that assign
truth values to the elements Bfop at each time step [18].

Definition 6 We interpret LTL formulas over computations of the farmw — 2°P,
wherew is used in the standard way to denote the set of non-negatigdrs. We define
m,i E f (computationr at time instant ie w satisfies LTL formula f) as follows:

— mikE pforpe Propif pe n(i).

—miE AQifnriEgandr,ik go.

—miEe-gifmikqg.

—-mieXgifri+1lkeqg.

— m,i EQuUQg if A) > i, such thatr, | £ g, andVk,i < k < j, we haver,k E g.
—miE R if V] =i, if m, ] £ 02, thendk, i < k < |, such thatr, k E ;.

— m,i EFgifdj =i, such thatr, j £ g.

-miegqifVj =i, jEQ.

We take mode($) to be the set of computations that satisfy f at time O, {ize. 7, 0 E
f}.

Appendix B: Universal Model and Benchmark Formulas From [4Q

In [40] we showed how to relate LTL satisfiability checkinglf6L. model checking.
Suppose we have @niversal model Mhat generates all traces over its set of atomic
propositions Prop; that is, we have that,,(M) = (2°"P)~. ThenM doesnot satisfy
-f if and only if f is satisfiable. We can use a model checker to check whdther
is satisfiable by checking the formutaf against the universal modef;is satisfiable
precisely when the model checker finds a counterexample.

For example, iff = (X(aU b)), we provide the following input to CadenceSMtV

module main () {

a : boolean;

b : boolean;
assert “(X(a U b));
FAIRNESS TRUE; }

5 The model for NuSMV is nearly identical. We need to add FAIRB$Eto guarantee that the
model checker returns an infinite trace, which may not hagpémere are no FAIRNESS
statements in the model.
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The model checker negates the specificatioin,compiles the negated specificatidn,
into the symbolic automatofis, and conjoindAs with the universal model. IA; is not
empty, the model checker finds a fair trace, which satisfiegalmulaf.

Input Formulas Utilizing the benchmarks established by [40], we evaluatedset of
encodings using three types of scalable formulas: randemulas, counter formulas,
and pattern formulas. We experimented with both Cadence8MI/NuSMV as back-
ends for our encodings. Unlike in [40], correctness of th& @NSAT answers was not
an issue. The only cases where we found disagreement webeitble to the subtle
semantic dierences between CadenceSMV and NuSMV covered in Appendix C.

Random Formulaslin order to cover as much of the problem space as possible, we
generated random formulas as in [15]. We created 60 setdfidBthulas each varying

the number of variables from 1 to 3, and the length of the fdanfitom 5 to 200. We
refer to a formula with a total of 150 operators and atomigsitions as a “150 length
random formula.” We chose from the operator §etv, A, X, U, R, G, F,GF}. (We
included the combinatiog?¥ as a single operator because that combination occurs
so frequently in industrial specifications.) To create falas with both a nontrivial
temporal structure and a nontrivial Boolean structure, ghebability of choosing a
temporal operator was.®. Other choices were decided uniformly. All formulas were
generated prior to testing for repeatability.

Counter FormulasTo measure performance on scalable, temporally complentitas
with large state spaces, we tested our encodings on forrthdaslescribe-bit binary
counters with increasing valuesf\We know precisely the unique counterexample for
each counter formula and the requisite number of stateh®atitomaton. We tested
four constructions of binary counter formulas, varying ti@otors: number of variables
and nesting oX’s.

We can represent a binary counter using two variables: ateowariable and a
marker variable to designate the beginning of each new eowatue. Alternatively, we
can use 3 variables, adding a variable to encode carry bitsshweliminates the need
for U-connectives in the formula. We can n&%s to provide more succinct formulas or
express the formulas using a conjunction of un-neatesib-formulas. These formulas
were originally defined in [40].

Pattern Formulas We evaluated theficacy of each encoding on specific temporal
operators using the eight patterns of scalable formulasi@efby [24] plus one we
defined and calR,.

sm=/\gm Em=AFp Q= AFpvGp.a),
i=1 i=1

UM=C..(paUP)U ..)UPn Ua(n)=prUP2UC(...Pn-1UPp)...),

Ci(n) = \/ GFpi, Cun)= /\ GF pi.
i=1 i=1
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R(n) = A(Q?'pi VFGPi+1), R =(C..(mRP2R...)R pn
i=1

Since CadenceSMV does not accépoperators, we eliminated them from our
LTLSPECs using the conversiog{Rgz) = —(—g1U~Q>).

Appendix C: CadenceSMV and NuSMV Semantic Subtleties

We encountered one large, and several more subtle butrsplétful diferences be-
tween the implementations of CadenceSMV and NuSMV wheintgstur novel en-
codings. Most significantly, TGBA-encoded symbolic auttem@annot be checked us-
ing NuSMV because variable definitions in termsDaff INE-statements may only as-
sign simple expressions composed of state variables. T3#refore, NuSMV cannot
parse thenext () operators in OUDEFINE section. NUSMV does notfter alternative
ways to define variables (e.gSSIGN-statements) which allow our TGBA construc-
tion.®

Though NuSMV cannot parse our TGBA-encoded automata, fafahe encod-
ings we could check with both SMV variants, we saw similagngicant improvements
when running PANDA with that model checker as a back-endugrunning the model
checker alone. As expected, we found our automata with Nu3leld back end pro-
duced diferent timing results than the same automata with Cadence&\\back end,
just as running each of the tools alone producéldint timing results, though neither
SMV was always faster. Both tools agreed on the satisfighifia given LTL formula
100% of the time. Also, the results (either SAT or UNSAT) reeed by CadenceSMV
and NuSMV always agreed with the results of running all 30oelmgys of the same
formula. However, in order to compare our novel encodingess both SMV back-
ends, we had to account for several non-intuitive subtleasgim diferences between
CadenceSMV and NuSMV.

While both basically use the CGH encoding, the precise séosaof CTL model
checking in CadenceSMV and NuSMYV are not explicitly docutaedrand the subtle,
often unexpected, fierences between the implementations of the two tools coatpk
the problem of creating alternative encodings. The foltgyiules are necessary to work
around the several subtleties that arise when checkingmpiigess of fair symbolic
Buchi automata:

There must be at least one initial stateFor both NuSMV and CadenceSMYV, there
is an implicit universal quantifier over all initial state$.there are no initial states,
then the formula is automatically “true.” Declaring an ialtstate is not enough to
satisfy this condition. For exampl&NIT (a&(!a)) specifies that there is no initial
state. Similar semantic subtleties have impacted relatedd with SMV, such as model
checking temporal logic meta-property specifications fosteact state machines [2],
where the problem that this unexpected quantification onitial states means that
M E EF(p) £ M £ AG(—y).

6 Thanks to Viktor Schuppan and the members of the NuSMV tearalfowing our construc-
tion in future versions of NUSMV.
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Symbolic automata must always have a FAIR statement, even if is “FAIR
true.” CadenceSMYV considers terminal traces to be fair when threre@fairness con-
straints. A fair trace is defined to be a maximal trace on wiaitfiairness constraints
are true infinitely often, which includes terminal tracesrindels without fairness con-
straints. The semantics with a fairness constraint is thiérite traces” semantics where
states without infinite traces are discarded. Thereforenwst have at least one fairness
constraint to prevent the possibility of a model with ondiatistate and no legal transi-
tions from model checking as “false.” Rather than the ctadsalgorithm of implicitly
universally quantifying over all initial states, NUSMV tasts itself to allfair initial
states. If there are no fair initial states, the formula i®anatically “true.”

The SPEC should be (! { A EG true)). Both CadenceSMV and NuSMV consider
a CTL formulag to hold in a modeM if ¢ holds inall initial states ofM. If M has no
initial states, then every holds inM. UsingSPEC (! (¢ A EG true)), if the model
is not empty, the counterexample returned is a trace of thaetno

INIT ¢ SPEC !(EG true) is not equivalent toSPEC (!(¢ A EG true)).For
example, ife is simply falseand we checlSPEC (! (false A EG true)), then the
check will pass (i.e. there will be no counterexample intlicasatisfiability), since no
trace satisfiefalse If, however, we stat&NIT falseand checlSPEC ! (EG true),
then the check will fail and a counterexample will be retutnehich is clearly not
what we intended. Similarly, checking for a finite countemele usingSPEC !(S¢)
may produce spurious results.

Our symbolic TGBAs can be checked by CadenceSMV but not byNRi$n Ca-
denceSMVnext () statements may not be nested or preseriNiiT, FAIRNESS, or
SPEC statements. Our solution is to uBke-variables inINIT andSPEC statements and
use Promise vars iBAIRNESS statements. TGBA-formatted symbolic automata can-
not be checked using NuUSMV because variable definitior3E#@NE-statements) may
only assign simple expressions composed of state varidkiesefore, NUSMV cannot
parse thenext () operators in OUDEFINE section. While NUSM\ASSIGN-statements
do allownext () operators, they must occur alone on the left-hand-sideeoftisign-
ment, which still excludes our TGBA construction.

Appendix D: Proof of Theorem 3

Theorem 3 Let M; be the SMV program generated by our symbolic TGBA encoding
foran LTL formula f. Then Mdoes not satisfy the specificatiodEL_f & EG true)
iff fis satisfiable.

Proof. We prove each direction in turn.

Only if: If f is satisfiable then the specificatiorl (EL_f & EG true) does not
hold in Mx.

If fis satisfiable, there is a trage= 7o, 71, ... € (2°™P)® such thatr,0 = f (trace
m at time instant 0 satisfie), wherePropis the set of atomic propositions occurring
in f. To show that! (EL_f & EG true) does not hold inM¢, we need to exhibit an
infinite tracenr” of M¢ such thatEL; holds at point O oft’. A tracen’ of M; is a trace
n = np, ... € (23 D)% whereVar(f) is the set of variables d¥l¢, consisting of:
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— the atomic propositionBrop,
— the variableE L4 for each elementary formulgof f,
— and a promise variablg, for each?(, ¥, andg¥ subformula off.

Note thatProp c Var(f). We definer” as a conservative extensionfthat is, ] N
Prop= xj, foralli > 0. We define this extension as follows:

— for each elementary formulgof f, we have thaELy € ] iff n,i | g (tracer at
time instant € w satisfies subformulg),

— for a subformulgg of f, of the formh’¢h, #h or G7h, we have thaPy € n iff
m, i E g, butr,i £ h.

Note that since is an elementary formula of itself andO  f, we immediately have
thatEL; € .

It remains to show that’ is a trace oM¢. To that end we first extend. LetVar'(f)
be the set oéll variables inM, including auxiliary variables. We defing e (2Va" (D)
as a conservative extensionsdf that is,r;" N Var(f) = =, for all i > 0. We define this
extension as follows: for each subformglaf f, we have tha§q € /" iff 7,i k g.

We now need to show that all the statementd/gfhold inn”’. EachTRANS state-
mentELy = Sy holds trivially, as for each elementary formujeof f, we have that
Elg € n{’ iff m,i | giff Sy € n{’. TheDEFINE statements fon, v, X, R, andg hold
because of the basic properties of the propositional angaeshconnectives [18]. For
F-, U-, and GF -subformulas, we also have to take into account promisealvbas.
Consider, for example, a subformdi@f the form¥ g, for which theDEFINE statement
is Sh = Syl(Ps g&nex(ELs g)). SupposeSy € n’, which means that,i E 7g. We
know thatr,i | Fgiff eithern,i E g or bothr,i £ gandn,i+1E h. If n,i E g,
thenSy € n’. If m,i £ g, thenP#y € n” andEL;, € n{ ;. Conversely, ifSq € n{’, then
m,i | g, which entailsy,i | 79, and, consequentlg, € #j’". Also, if EL, € «f’,,
thenr,i+ 1k h, and, consequently, i = handSy € #j". The arguments foi/- and
GF -subformulas are similar.

Finally, we need to show that tHEATRNESS statement holds. That is, for each
promise variableéP, there are infinitely manys such thatPy, |¢ n{. Assume, for exam-
ple, thath is the subformul& g. Suppose to the contrary that tA#IRNESS statement
fails. That is, there is somig > 0 such thaPy € #j for all i > ip. But this means that
m,ip E 0, andn,i t£ gforalli > ip, which is impossible. The arguments fbf- and
GF-subformulas are similar.

If: If M¢ does not satisfy the specification (EL_f & EG true) then f is satisfi-
able.

Suppose the specificatidEL_f & EG true) does not hold irM¢. Then, by defi-
nition, there is an infinite trace’ = nj, 7, . .. € (2V3(N) of M¢ such thaEL; holds at
point 0 of 7/, whereVar(f), as defined above, corresponds to the set of atomic proposi-
tionsinf, elementary formula variables, and promise variableshbwghatf is satisfi-
able, we show that the infinite trage= 7o, 711, . . . € (2P™P)*, defined byr; = 7/ N Prop
fori > 0, satisfiesf at time 0O; thatisgr,0 E f.

Again, we first definer” e (2V2"(N)» as a conservative extension of where
Var'(f) includesall variables inM¢, including auxiliary variables. ThBEFINE state-
ments define each auxiliary variat8g in the characteristic function in terms of the set
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of variables inVar(f), supplemented with an auxiliary variaby corresponding to
each subformulg of h. Sincen” is defined oveNar'(f), the values for the auxiliary
variables can be defined uniquely using the characteristiction.

We now prove that for every subformuteof f andVi > 0 we have thaSy, € #” (i)
entailsr, i | h. The proof is by induction oh.

Base caseForh = p € Prop, we have thaS, = p. SoSy € #”(i) iff p € n(i) iff
7, i |E p. If h==p, then we have thé®, =!p. SoSy € n”(i) iff Sp ¢ #”(i) iff m,i £ p
iff 7,i E h,

Induction stepAssume the claim holds for subformulg;, g, of f.

-h=01A0.
We have thaBh = Sq&Sg,. S0Sh € n”(i) iff S, € /(i) andSg, € #”(i), which
entailsr, i | g; andn, i E g2, which entailsr, i E h.

-h=01Va.
We have thaBp = Sy, vV Sg,. S0Sh € (i) iff S, € n”(i) or Sy, € n”(i), which
entailsr, i | g; orx, i E g2, which entailsr, i E h.

- h=Xg.
We have thaBh = nex{EL.g). SoSy € n”(h) iff ELg € #”(i + 1) iff (by theTRANS
statementy € 7’ (i + 1), which, by induction, entails, i + 1 = g, which entails
m,iEh

-h=0gUg.
We have thaty = Sg,|(Sg, & Ph&(nex(ELy))). Supposes, € n”’(i). Then either
Sy, € '(i) or Sq, € n”(i), Pn € n”'(i), andEL, € 7”(i + 1). Note that, by th&RANS
statementEL, € 7/(i + 1) iff Sh € 7”(i + 1). Thus,Sgy, can be “postponed,” at the
cost of maintainingsy, andPy. But theFAIRNESS statement implies that there is
somej : j > i wherePy, ¢ n”(j). Choose the smallest su¢ghThen we have that
Sy, € ”(j), andvk : i < k < j, we have thaSy, € n”(k). By induction,r, | = g2,
andvk,i < k < j, we have that, k = g;. It follows thatr,i = h.

-h=01R0.
We have thaBh = Sg,&(Sg,|(nex(ELy)). SoSy € n”(i) iff Sg, € #”(i) and either
Sy, € n’(i) or ELy € n”(i + 1). Note that, by th&RANS statementEL, € 7/ (i + 1)
iff Sp e n”(i + 1). It follows thatSg, is “propagated” until “released” b$g;. That
is, if Sp € (i) thenVj : j > i, eitherSg, € n”(j) or there is somé& : i < Kk < j,

such thatSq; € #”(K). By induction, for allj : j > i, eithern, j = g or there is
somek : i < k < j, such thatr,k £ g;. It follows thatr,i = h.
- h=gg

We have thaSy = Sg&(nex(ELy)). SoSh € n”(i) iff Sg € n”’ (i) andE Ly € 7”7 (i+1)
iff g € n(i) and (by theTRANS statementBg g € n”(i + 1). It follows thatSg is
continually propagated. That is, &, € n”’(i), then, for allj : j > i, we have that
Sy € 7”(j). By induction, for allj : j > i, we have that, j = g. It follows that
i Eh

- h=%g.
We have thaBp = Sy|(Ph&nex(ELy)). Supposey € n”(i). Then eithelSy € 7 (i)
or P, € n”(i) andEL;, € n”’(i+1). Note that, by th&RANS statementELy, € 7”7 (i+1)
iff Sh € 7”(i + 1). Thus,S4 can be “postponed,” at the cost of maintainidg But
the FAIRNESS statement implies that there is sorpe j > i wherePy ¢ 7”(j).
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Choose the smallest sughThen we have the8g € 7”(j). By induction,z, j = g.
It follows thatr,i E h.

- h=67g.
We have thaB, = ((nex(ELn)&(SglPh). Supposéy € n”(i). ThenEL, € 77 (i+1)
and eitherSy € n”(i) or P, € n”(i). Note that, by theTRANS statementEL, €
7”@ + 1) iff Sy € n”(i + 1). Thus, for allj : j > i we have thaSy € n”(j).
Again, we note thagy can be “postponed” at the cost of maintainifg But the
FAIRNESS statement implies that for evely: j > i there is somé : k > j where
Pn ¢ n” (k). For eachj > i, choose smallest sudd call it kj. Then we have that
Sy € 1’ (Kj). By induction,r, k; k= g. It follows thatr, i | h.

By assumptiorEL; € n”’(0). By theTRANS statement it follows tha®; € =n”(0),
and thereforer, 0 = f. Therefore f is satisfiable.

Appendix E: Application Benchmarks

In order to demonstrate further that our PANDA encoding edigrms the native en-
coding of CadenceSMYV for real-life LTL satifiability checlg, we also tested both
tools on a set of application benchmarks, comprised of fétesused to specify actual
systems. Our application benchmark formulas come fromaixces?

. acacia demo-v2210 formulas
. acacia demo-v36 formulas

. acacia example25 formulas

. alaska szymanski:4 formulas
. anzu amba:8 formulas

. anzu genbuf:10 formulas

OOk WNER

The acacia demo-v2Zacacia demo-v3andacacia exampldéormulas are specifi-
cations for systems such as arbiters andhtrdight controllers, distributed with the
Acacia toof , as developed for a study on LTL realizability and synth¢@. The
alaska szymanskormula$ were developed as liveness properties for the Szymanski
mutual exclusion protocol for LTL satisfiability and modefecking [16]. The Anzt?
benchmarks are sets of formulas used for synthesizing tridubardware systems
from specifications, combined into monolithic formulas floe purpose of satisfiability
checking [6]. Theanzu ambdormulas are specifications for advanced microcontroller
bus architectures while trenzu genbugpecifications describe generalizedibus.

We applied PANDA and CadenceSMV to these 63 applicationtirmack formulas.
PANDA completed 51 formulas before spacing out, while Cag&MV completed 45
formulas before spacing out. The comparison of the perfoceaf CadenceSMV and
PANDA-best on these application benchmark formulas ist@tbin Figure 12 using a

7 Thanks to Viktor Schuppan for suggesting these sourcesjding some of the formulas in
SMV format, and constructing the Anzu formula combinations

8http://www.antichains.be/acacia/src/acacia_9_linux_i386.tar.gz

9http://www.antichains.be/alaska/tacas08_experiments.zip

Ohttp://wuw.iaik. tugraz.at/content/research/design_verification/anzu/
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classical cactus plot: the x-axis shows how many instan@se whecked in time less
than or equal to the runtime given on the y-axis, presumiry #re run in parallel.
PANDA solved more formulas and in less time than CadenceSMV.

Cactus Plot: Application Benchmark Formulas
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Fig.12. Cactus plot: median model analysis
time over all application benchmarks for Ca-
denceSMV and the best PANDA encoding.



